Monday, May 28, 2012

THE ONSET OF KNOWLEDGE ERA

Having started its innings as the greatest business-enabler, today IT is tending towards the significant factor and the facilitator of every aspect of human lives. Path-breaking and people-centric technologies (miniaturization, virtualization, federation, composition, collaboration, etc.) are emerging and are being experimented, expounded, and established in order to empower the professional and the personal IT to be smart, simple, supple and sensitive towards users’ situational needs and to significantly enhance peoples’ comfort, care, convenience and choice. Novel computing paradigms (grid, on-demand, service, cloud, etc.) erupt and evolve relentlessly to be greatly and gracefully impactful and insightful. In the monolithic mainframe era, one centralized and large system performed millions of operations to respond to thousands of users (one-to-many), today everyone has his own compute machine (one-to-one), and tomorrow a multitude of smart objects and electronic devices (nomadic, wearable, portable, implantable etc.) will seamlessly and spontaneously coexist, corroborate, correlate, and coordinate with one another dynamically with dexterity to understand one or more users’ needs, conceive, construct, and deliver them at right time at right place (many-to-one). Anytime anywhere computing tends towards everywhere, every time and everything computing.

Ambient intelligence (AmI) is the newest buzzword today with ambient sensing, networking, perception, decision-making and actuation technologies. Multimedia and multimodal technologies are flourishing in order to be make human interaction more friendly and fruitful. Dynamic, virtualized and autonomic infrastructures, flexible, integrated and lean processes, constructive and contributive building-blocks (service, model, composite, agent, aspect etc.), slim and sleek devices and appliances, smart objects empowered by invisible tags and stickers, natural interfaces, ad-hoc and situational networking capabilities all combine adaptively together to accomplish the grandiose goals of the forthcoming ambient intelligence days and decades. In short, ITsponsored and splurged smartness in every facet of our living in this world is the vision. Software engineering is on the right track with the maturity of service orientation concepts and software as a service (SaaS) model. Clouds chip in mightily in realizing the much-acclaimed knowledge era. Technologies form a dynamic cluster in real-time in order to contribute immensely and immeasurably for all the existing, evolving and exotic expectations of people.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011 

Saturday, May 26, 2012

ENRICHING THE ‘INTEGRATION AS A SERVICE’ PARADIGM FOR THE CLOUD ERA

The trend-setting cloud paradigm actually represents the cool conglomeration of a number of proven and promising Web and enterprise technologies. Though the cloud idea is not conceptually new, practically it has brought in myriad tectonic shifts for the whole information and communication technology (ICT) industry. The cloud concepts have progressively and perceptibly impacted the IT and business domains on several critical aspects. The cloud computing has brought in series of novelty-packed deployment, delivery, consumption and pricing models whereas the service orientation prescribes a much simpler application design mechanism. The noteworthy contribution of the much-discoursed and deliberated cloud computing is the faster realization and proliferation of dynamic, converged, adaptive, on-demand, and online compute infrastructures, which are the key requirement for the future IT. The delightful distinctions here are that clouds guarantee most of the non-function requirements (Quality of Service (QoS) attributes) such as availability, high performance, on-demand scalability/elasticity, affordability, global-scale accessibility and usability, energy efficiency etc.

Having understood the exceptional properties of cloud infrastructures (hereafter will be described as just clouds), most of the global enterprises (small, medium and even large) are steadily moving their IT offerings such as business services and applications to clouds. This transition will facilitate a higher and deeper reach and richness in application delivery and consumability. Product vendors having found that the cloud style is a unique proposition are moving their platforms, databases, and middleware to clouds. Cloud Infrastructure providers are establishing cloud centers to host a variety of ICT services and platforms of worldwide individuals, innovators, and institutions. Cloud service providers (CSPs) are very aggressive in experimenting and embracing the cool cloud ideas and today every business and technical services are being hosted in clouds to be delivered to global customers, clients and consumers over the Internet communication infrastructure. For example, security as a service (SaaS) is a prominent cloud-hosted security service that can be subscribed by a spectrum of users of any connected device and the users just pay for the exact amount or time of usage. In a nutshell, on-premise and local applications are becoming online, remote, hosted, on-demand and offpremise
applications. With the unprecedented advertisement, articulation and adoption of cloud concepts, the cloud movement is picking up fast as per leading market research reports. Besides the modernization of legacy applications and positing the updated and upgraded in clouds, fresh applications are being implemented and deployed on clouds to be delivered to millions of global users simultaneously affordably. It is hence clear that a number of strategic and significant movements happen silently in the hot field of cloud computing.

All these portend and predict that there is a new dimension to the integration scenario. Hitherto enterprise data and applications are being linked up via one or more standards-compliant integration platforms, brokers, engines, and containers within the corporate intranet. Business-to-business (B2B) integration is being attended via special data formats, message templates, and networks and even via the Internet. Enterprises consistently expand their operations to several parts of the world as they establish special partnerships with their partners or buy other companies in different geographies for enhancing the product and service portfolios. Business applications are finding their new residence in clouds. However most of the confidential and corporate data are still being maintained in enterprise servers for security reasons. The integration task gets just bigger with the addition of the cloud space and the integration complexity is getting murkier. Hence it is logical to take the integration middleware to clouds to simplify and streamline the enterprise-toenterprise (E2E), enterprise-to-cloud (E2C) and cloud-to-cloud (C2C) integration.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011 

Tuesday, May 22, 2012

Migration Risks and Mitigation

The biggest challenge to any cloud migration project is how effectively the migration risks are identified and mitigated. In the Seven-Step Model of Migration into the Cloud, the process step of testing and validating includes efforts to identify the key migration risks. In the optimization step, we address various approaches to mitigate the identified migration risks.

Migration risks for migrating into the cloud fall under two broad categories: the general migration risks and the security-related migration risks. In the former we address several issues including performance monitoring and tuning—essentially identifying all possible production level deviants; the business continuity and disaster recovery in the world of cloud computing service; the compliance with standards and governance issues; the IP and licensing issues; the quality of service (QoS) parameters as well as the corresponding SLAs committed to; the ownership, transfer, and storage of data in the application; the portability and interoperability issues which could help mitigate potential vendor lock-ins; the issues that result in trivializing and noncomprehending the complexities of migration that results in migration failure and loss of senior management’s business confidence in these efforts.

On the security front, the cloud migration risks are plenty—as addressed in
the guideline document published by the Cloud Security Alliance. Issues include security at various levels of the enterprise application as applicable on the cloud in addition to issues of trust and issues of privacy. There are several legal compliances that a migration strategy and implementation has to fulfill, including obtaining the right execution logs as well as retaining the rights to all audit trails at a detailed level—which currently may not be fully available. On matters of governance, there are several shortcomings in the current cloud computing service vendors. Matters of multi-tenancy and the impact of IT data leakage in the cloud computing environments is acknowledged; however, the robustness of the solutions to prevent it is not fully validated. Key aspects of vulnerability management and incident responses quality are yet to be supported in a substantial way by the cloud service vendors. Finally there are issues of consistent identity management as well.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011

Sunday, May 20, 2012

THE SEVEN-STEP MODEL OF MIGRATION INTO A CLOUD

Typically migration initiatives into the cloud are implemented in phases or in stages. A structured and process-oriented approach to migration into a cloud has several advantages of capturing within itself the best practices of many migration projects. While migration has been a difficult and vague subject—of not much interest to the academics and left to the industry practitioners—not many efforts across the industry have been put in to consolidate what has been found to be both a top revenue earner and a long standing customer pain. After due study and practice, we share the Seven-Step Model of Migration into the Cloud as part of our efforts in understanding and leveraging the cloud computing service offerings in the enterprise context.

The Seven Step Model of Migration into the Cloud. (Source: Infosys Research.)
1. Conduct Cloud Migration Assessments
2. Isolate the Dependencies
3. Map the Messaging & Environment
4. Re-architect & Implement the lost Functionalities
5. Leverage Cloud Functionalities & Features
6. Test the Migration
7. Iterate and Optimize

Cloud migration assessments comprise assessments to understand the issues involved in the specific case of migration at the application level or the code, the design, the architecture, or usage levels. In addition, migration assessments are done for the tools being used, the test cases as well as configurations, functionalities, and NFRs of the enterprise application. This results in a meaningful formulation of a comprehensive migration strategy. The first step of the iterative process of the seven-step model of migration is basically at the assessment level. Proof of concepts or prototypes for various approaches to the migration along with the leveraging of pricing parameters enables one to make appropriate assessments.

These assessments are about the cost of migration as well as about the ROI that can be achieved in the case of production version. The next process step is in isolating all systemic and environmental dependencies of the enterprise application components within the captive data center. This, in turn, yields a picture of the level of complexity of the migration. After isolation is complete, one then goes about generating the mapping constructs between what shall possibly remain in the local captive data center and what goes onto the cloud. Perhaps a substantial part of the enterprise application needs to be rearchitected, redesigned, and reimplemented on the cloud. This gets in just about the functionality of the original enterprise application. Due to this migration, it is possible perhaps that some functionality is lost. In the next process step we leverage the intrinsic features of the cloud computing service to augment our enterprise application in its own small ways. Having done the augmentation, we validate and test the new form of the enterprise application with an extensive test suite that comprises testing the components of the enterprise application on the cloud as well. These test results could be positive or mixed. In the latter case, we iterate and optimize as appropriate. After several such optimizing iterations, the migration is deemed successful. Our best practices indicate that it is best to iterate through this Seven-Step Model process for optimizing and ensuring that the migration into the cloud is both robust and comprehensive. Figure 2.6 captures the typical components of the best practices accumulated in the practice of the Seven-Step Model of Migration into the Cloud. Though not comprehensive in enumeration, it is representative.

Compared with the typical approach8 to migration into the Amazon AWS, our Seven-step model is more generic, versatile, and comprehensive. The typical migration into the Amazon AWS is a phased over several steps. It is about six steps as discussed in several white papers in the Amazon website and is as follows: The first phase is the cloud migration assessment phase wherein dependencies are isolated and strategies worked out to handle these dependencies. The next phase is in trying out proof of concepts to build a reference migration architecture. The third phase is the data migration phase wherein database data segmentation and cleansing is completed. This phase also tries to leverage the various cloud storage options as best suited. The fourth phase comprises the application migration wherein either a “forklift strategy” of migrating the key enterprise application along with its dependencies (other applications) into the cloud is pursued. Or perhaps using the “hybrid migration strategy,” the critical parts of the enterprise application are retained in the local captive data center while noncritical parts are moved into the cloud. The fifth phase comprises leveraging the various Amazon AWS features like elasticity, autoscaling, cloud storage, and so on. Finally in the sixth phase, the migration is optimized for the cloud. These phases are representative of how typical IT staff would like to migrate an enterprise application without touching its innards but only perhaps at the level of configurations—this perfectly matches with the typical IaaS cloud computing offerings. However, this is just a subset of our Seven-step Migration Model and is very specific and proprietary to Amazon cloud offering.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011 

Tuesday, May 15, 2012

Challenges in the Cloud

While the cloud service offerings present a simplistic view of IT in case of IaaS or a simplistic view of programming in case PaaS or a simplistic view of resources usage in case of SaaS, the underlying systems level support challenges are huge and highly complex. These stem from the need to offer a uniformly consistent and robustly simplistic view of computing while the underlying systems are highly failure-prone, heterogeneous, resource hogging, and exhibiting serious security shortcomings. The promise of the cloud seems very similar to the typical distributed systems properties that most would prefer to have. Invariably either in the IaaS or PaaS or SaaS cloud services, one is proffered features that smack of full network reliability; or having “instant” or “zero” network latency; or perhaps supporting “infinite” bandwidth; and so on. But then robust distributed systems are built while keeping mind that are these fallacies6 that must be studiously avoided at design time as well as during implementations and deployments. Cloud computing has the ironical role of projecting this idealized view of its services while ensuring that the underlying systems are managed realistically. In fact the challenges in implementing cloud computing services are plenty; prime amongst these are the challenges of
security. The Cloud Security Alliance seeks to address many of these issues.

Friday, May 11, 2012

The Cloud Service Offerings and Deployment Models

Cloud computing has been an attractive proposition both for the CFO and the CTO of an enterprise primarily due its ease of usage. This has been achieved by large data center service vendors or now better known as cloud service vendors again primarily due to their scale of operations. Google, Amazon, Microsoft, and a few others have been the key players apart from open source Hadoop built around the Apache ecosystem. The cloud
service offerings from these vendors can broadly be classified into three major streams: the Infrastructure as a Service (IaaS), the Platform as a Service (PaaS), and the Software as a Service (SaaS). While IT managers and system administrators preferred IaaS as offered by Amazon for many of their virtualized IT needs, the programmers preferred PaaS offerings like Google AppEngine (Java/Python programming) or Microsoft Azure (.Net programming). Users of large-scale enterprise software invariably found that if they had been using the cloud, it was because their usage of the specific software package was available as a service—it was, in essence, a SaaS offering. Salesforce.com was an exemplary SaaS offering on the Internet.

From a technology viewpoint, as of today, the IaaS type of cloud offerings have been the most successful and widespread in usage. However, the potential of PaaS has been high: All new cloud-oriented application development initiatives are based on the PaaS model. The significant impact of enterprises leveraging IaaS and PaaS has been in the form of services whose usage is representative of SaaS on the Cloud. Be it search (Google/Yahoo/Bing, etc.) or email (Gmail/Yahoomail/Hotmail, etc.) or social networking (Facebook/Twitter/Orkut, etc.), most users are unaware that much of their on-line activities has been supported in one form or the other by the cloud.

The cloud application deployment and consumption was modeled at three levels: the public cloud offerings from cloud vendors; the private cloud initiatives within large enterprises; and the hybrid cloud initiatives that leverage both the public cloud and the private cloud or managed services data centers. The IaaS_oriented services offered abstracted (or virtualized and scalable) hardware—like compute power or storage or bandwidth. For example, as seen from its pricing tariffs webpage for 2009, Amazon5 offered six levels of abstracted elastic cloud compute (EC2) server power: the “small-instance,” “large-instance,” “extra-large instance,” “high-cpu instance,” “high-cpu medium instance,” or “high-cpu extra-large instance.” Each of these are accompanied
by appropriate RAM, storage, performance guarantees, and bandwidth support. The PaaS offerings are focused on supporting programming platforms whose runtime implicitly use’s cloud services offered by their respective vendors. As of today, these highly vendor-locked PaaS technologies have been leveraged to develop new applications by many startups. Compared to IaaS offerings, applications riding on PaaS deliver better performance due to the intrinsic cloud support for the programming platform. The SaaS on Cloud offerings are focused on supporting large software package usage leveraging cloud benefits. Most users of these packages are invariably ignorant of the underlying cloud support—in fact most, if not all, do not care. Indeed, a significant degree of the features of the software package invariably reflect the support of the cloud computing platform under the hood. For example, in gmail, users hardly bother about either the storage space taken up or whether an email needs to be deleted or its storage location. Invariably these reflect the cloud underneath, where storage (most do not know on which system it is) is easily scalable or for that matter where it is stored or located.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011 

Monday, May 7, 2012

The Promise of the Cloud

Most users of cloud computing services offered by some of the large-scale data centers are least bothered about the complexities of the underlying systems or their functioning. More so given the heterogeneity of either the systems or the software running on them. They were most impressed by the simplicity, uniformity, and ease of use of the Cloud Computing Service abstractions. In small and medium enterprises, cloud computing usage for all additional cyclical IT needs has yielded substantial and significant economic savings. Many such success stories have been documented and discussed on the Internet. This economics and the associated trade-offs, of leveraging the cloud computing services, now popularly called “cloudonomics,” for satisfying enterprise’s seasonal IT loads has become a topic of deep interest amongst IT managers and technology architects.

The promise of the cloud both on the business front (the attractive cloudonomics) and the technology front widely aided the CxOs to spawn out several non-mission critical IT needs from the ambit of their captive traditional data centers to the appropriate cloud service. Invariably, these IT needs had some common features: They were typically Web-oriented; they represented seasonal IT demands; they were amenable to parallel batch processing; they were non-mission critical and therefore did not have high security demands. They included scientific applications too. Several small and medium business enterprises, however, leveraged the cloud much beyond the cautious user. Many startups opened their IT departments exclusively using cloud services—very successfully and with high ROI. Having observed these successes, several large enterprises have started successfully running pilots for leveraging the cloud. Many large enterprises run SAP to manage their operations. SAP itself is experimenting with running its suite of products: SAP Business One as well as SAP Netweaver on Amazon cloud offerings. Gartner, Forrester, and other industry research analysts predict that a substantially significant percentage of the top enterprises in the world would have migrated a majority of their IT needs to the cloud offerings by 2012, thereby demonstrating the widespread impact and benefits from cloud computing. Indeed the promise of the cloud has been significant in its impact.

Source of Information : Wiley - Cloud Computing Principles and Paradigms 2011 

Friday, May 4, 2012

Securing data for transport in the cloud

Regarding data transport, keep two things in mind:
✓ Make sure that no one can intercept your data as it moves from point A to point B in the cloud.
✓ Make sure that no data leaks (malicious or otherwise) from any storage in the cloud.

None of these concepts are new; the goal of securely transporting data has been around as long as the Internet.

In the cloud, the journey from point A to point B might take on three different forms:
✓ Within a cloud environment
✓ Over the public Internet between an enterprise and a cloud provider
✓ Between clouds

The security process may include segregating your data from other companies’ data and then encrypting it by using an approved method. In addition, you may want to ensure the security of older data that remains with a cloud vendor after you no longer need it.

A virtual private network (VPN) is one way to manage the security of data during its transport in a cloud environment. A VPN essentially makes the public network your own private network instead of using dedicated connectivity.
A well-designed VPN needs to incorporate two things:
✓ A firewall to act as a barrier to between the public Internet and any private network (like at your enterprise).
✓ Encryption to protect your sensitive data from hackers; only the computer that you send it to should have the key to decode the data.

Your level of concern about security may vary, depending on the governance requirements for your data. In some situations, such as with a test environment processing test data, you may have limited concerns about some of these security and privacy issues. In other situations where you may have a lot at risk if the security and privacy of your data is compromised, you need to evaluate how your cloud vendor treats the security issues.

In addition, you will need to determine how you can audit the ongoing security processes to make sure that your data remains secure.

Concerns about privacy and security of data have contributed to many companies’ interest in developing private cloud environments — where company data remains inside the firewall — and to consider hybrid cloud environments — which incorporate some elements of a private cloud and some elements of a public cloud.

Source of Information : cloud computing for dummies 2010 retail ebook distribution